Using Self-Organizing Maps to Learn Geometric Hash Functions for Model-Based Object Recognition - Neural Networks, IEEE Transactions on

نویسندگان

  • George Bebis
  • Michael Georgiopoulos
  • Niels da Vitoria Lobo
چکیده

A major problem associated with geometric hashing and methods which have emerged from it is the nonuniform distribution of invariants over the hash space. This has two serious effects on the performance of the method. First, it can result in an inefficient storage of data which can increase recognition time. Second, given that geometric hashing is highly amenable to parallel implementation, a nonuniform distribution of data poses difficulties in tackling the load-balancing problem. Finding a “good” geometric hash function which redistributes the invariants uniformly over the hash space is not easy. Current approaches make assumptions about the statistical characteristics of the data and then use techniques from probability theory to calculate a transformation that maps the nonuniform distribution of invariants to a uniform one. In this paper, a new approach is proposed based on an elastic hash table. In contrast to existing approaches which try to redistribute the invariants over the hash bins, we proceed oppositely by distributing the hash bins over the invariants. The key idea is to associate the hash bins with the output nodes of a self-organizing feature map (SOFM) neural network which is trained using the invariants as training examples. In this way, the location of a hash bin in the space of invariants is determined by the weight vector of the node associated with the hash bin. During training, the SOFM spreads the hash bins proportionally to the distribution of invariants (i.e., more hash bins are assigned to higher density areas while less hash bins are assigned to lower density areas) and adjusts their size so that they eventually hold almost the same number of invariants. The advantage of the proposed approach is that it is a process that adapts to the invariants through learning. Hence, it makes absolutely no assumptions about the statistical characteristics of the invariants and the geometric hash function is actually computed through learning. Furthermore, SOFM’s “topology preserving” property ensures that the computed geometric hash function should be well behaved. The proposed approach, was shown to perform well on both artificial and real data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using self-organizing maps to learn geometric hash functions for model-based object recognition

A major problem associated with geometric hashing and methods which have emerged from it is the nonuniform distribution of invariants over the hash space. This has two serious effects on the performance of the method. First, it can result in an inefficient storage of data which can increase recognition time. Second, given that geometric hashing is highly amenable to parallel implementation, a n...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Shape indexing using self-organizing maps

In this paper, we propose a novel approach to generate the topology-preserving mapping of structural shapes using self-organizing maps (SOMs). The structural information of the geometrical shapes is captured by relational attribute vectors. These vectors are quantised using an SOM. Using this SOM, a histogram is generated for every shape. These histograms are treated as inputs to train another ...

متن کامل

Topology constraint free fuzzy gated neural networks for pattern recognition

In this paper, a novel topology constraint free neural network architecture using a generalized fuzzy gated neuron model is presented for pattern recognition task. The main feature is that the network does not require weight adaptation at its input and the weights are initialized directly from the training pattern set. The elimination of the need for iterative weight adaptation schemes facilita...

متن کامل

Distortion tolerant pattern recognition based on self-organizing feature extraction

A generic, modular, neural network-based feature extraction and pattern classification system is proposed for finding essentially two-dimensional objects or object parts from digital images in a distortion tolerant manner, The distortion tolerance is built up gradually by successive blocks in a pipeline architecture. The system consists of only feedforward neural networks, allowing efficient pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998